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Purpose – Pricing is a strategic competitive leverage and firms increasingly utilize data-driven 
pricing methods. Estimates of product-level price elasticities are needed to determine the best prices 
for each product, hence reliable estimation is of first-order importance. However, due to the 
increasing number of products and dynamics of customer behavior, relevant historical data is often 
limited.  

Design/methodology/approach – The objective of this paper is to jointly cluster products with 
similar price elasticities and estimate this cluster-specific quantity using regression clustering. An 
extension of the regression clustering problem. Two heuristics are proposed: The gradient descent-
based heuristic iterates through feasible solutions to increase cluster-specific regression fit. The 
categorical ordering heuristic fits a regression for each product, orders the products based on the 
mean response, and splits them at the largest gap. Using simulated and real-world datasets, a 
comparative performance analysis is conducted.  

Findings – Using the gradient descent-based heuristic with multiple starting solutions gives the best 
performance. The computational times could decrease with smart initial solutions, which is 
especially critical if the number of products is large. The categorical ordering heuristic, the fastest 
method, performs better when there are more than two clusters but suffers from robustness 
problems.  

Discussion – The findings show that offered heuristics are effective to estimate product-specific 
price elasticity with limited data. Firms could leverage these estimates to increase revenues and 
profits by better aligning product prices with demand. Given that many products have limited 
relevant data, the extent of the applications of our method is quite large which, in turn, could help 
firms stay competitive. 

1. Introduction 

In today’s highly competitive and increasingly transparent markets, product pricing is a critical success factor 
for firms to attract and retain customers. With the development of the revenue management field and its 
uptake in the industry, scientific methods to develop the optimal product pricing are gaining momentum as 
an alternative to manual and simple ruled-based (e.g., cost plus a fixed margin) pricing strategies (Talluri and 
Van Ryzin, 2006). One of the key inputs to such methods is to quantify how much the product demand would 
change as the product price is modified. Hence one needs to reliably estimate the price elasticity for each 
product which measures the percentage change in demand as the price increases by one percent, keeping all 
the other factors that affect demand constant.  

Price elasticity estimation has been studied in many earlier works, albeit mostly at the category level. For 
example, Andreyeva et al. (2010) reviews earlier studies on the price elasticity of food products and provides 
a list of mean elasticities for some of the food categories such as soft drinks, milk, eggs, and beef. However, 
product (e.g., stock keeping unit SKU) specific elasticity is required to calculate the right price for each product 
in the assortment.  

Estimation of product-level price elasticity is not an easy task. According to the Food Marketing Institute, a 
typical US supermarket carries somewhere between 16000 to 60000 stock keeping units on average (Peer 2019). 
With an increasing number of SKUs, estimating product-level price elasticity is ever challenging: Price 
elasticity is dynamic (Fibich et al., 2005) and there is generally limited amount of relevant data to estimate 
(Bauer and Jannach, 2018). For firms that employ consistent pricing instead of “everyday low pricing” strategy, 
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the amount of relevant data is even scarcer: For example, using a supermarket sales data Cohen et al. (2017) 
states that a particular brand of ground coffee was promoted (i.e. discounted price) in only 8 weeks out of the 
total 35 weeks during which the price was kept constant. Thus, there is a real need for methods to estimate 
product-level elasticity in the face of limited historical data. Fitting a different regression equation for each 
product to estimate price elasticity could simply lead to statistically insignificant results due to this data 
limitation. 

In this paper, our objective is to jointly classify products based on their price elasticity and estimate single 
price elasticity for all the products in the group. Since more frequent price changes are observed in the 
collection of products in the group as compared to a single product, our method circumvents the 
aforementioned data limitation problem by using all the price change information for the products in the 
group. A modified version of the regression clustering methodology is employed to solve this problem. As the 
exact solution of this problem takes too much computational time, fast and close-to-optimal algorithms are 
designed to solve this clustering problem for large assortments. 

A limited number of approaches have been proposed in the literature to deal with the aforementioned 
problem. Bauer and Jannach (2018) employs machine learning techniques to estimate the optimal product 
price under sparse sales data. They overcome the data availability problem by combining kernel regression 
results with information on the products within the same subcategory using a Bayesian inference approach. 
Greenstein-Messica and Rokach (2020) clusters products sold by an e-commerce retailer based on similarity 
using semantic features and clickstream behavior of customers. To find the optimal prices for an Airbnb 
listing-night, which is by nature a quite unique product with sparse data, Ye et al. (2018) presents a customized 
regression model tied to a booking probability model.  

Regression clustering, also known as clusterwise regression, aims to form groups of data points that follow 
the same regression hyperplane given the independent variables. It was Charles (1977) who first introduced 
the problem in the literature. Since this problem is common across many diverse sets of fields, regression 
clustering is used in many applications such as customer segmentation (Wedel and Kistemaker, 1989 and 
Brusco et al., 2003), groundwater remediation system design (He et al., 2008), monthly rainfall prediction 
(Bagirov et al., 2017), wine classification (Costanigro et al., 2009), and stroke diagnosis (McClelland and 
Kronmal, 2002). Späth (1979) presents an exchange algorithm to solve for the optimal hard cluster 
memberships for each data point such that the total sum of squares (SSE) is minimized. DeSarbo (1988) 
provides a soft clustering technique as an alternative that aims to maximize the log-likelihood function of each 
data point belonging to a specific cluster.   

There are two main decisions one has to solve for in regression clustering problems: the optimal number of 
clusters and the cluster memberships. This paper develops algorithms for optimal binary partitioning, hence 
papers that study the latter problem are discussed next. In order to solve for the optimal soft binary 
partitioning, a nonlinear mixed-integer programming formulation is presented in Lau et al. (1999) which is 
then solved by an expectation-maximization heuristic. A mixed logical-quadratic programming formulation 
is proposed in Carbonneau et al. (2011) which is shown to generate numerically stable solutions that are also 
global optimal using both real and synthetic datasets. As an extension, Carbonneau et al. (2012) offers to solve 
this combinatorial problem using a repetitive branch and bound algorithm which is found to be much faster 
than simply using a commercial optimization solver. An incremental algorithm is proposed in Bagirov et al. 
(2017) based on a non-smooth nonconvex formulation. The authors analyze the effect of the quality of the 
starting solutions and argue that the method is effective even with large but not too sparse datasets with a 
limited number of outliers. Kayış (2020) presents a gradient descent-based heuristic to solve a modified version 
of the regression clustering problem for small datasets. Joki et al. (2020) introduces a support vector machine-
based formulation coupled with the 𝐿𝐿1 norm for the objective function that performs well even with datasets 
that include outliers. The performance of several metaheuristics (e.g., column generation, genetic algorithm, 
Späth’s algorithm) are proposed and compared in Park et al. (2017) using synthetic and real-world datasets. 

In this paper, regression clustering is applied to estimate product-level price elasticity based on cluster 
memberships. Our approach differs from the existing literature in regression clustering as each data point 
from the same predefined subgroup (e.g., same SKU) has to belong to the same cluster. For example, a data 
point representing weekly price and corresponding sales for a specific product can be a member of a cluster if 
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all data points belonging to the same product are in the same cluster as well. The aim of this paper is to find 
cluster membership of each data point subject to the aforementioned constraint in order to minimize the total 
sum of squares resulting from fitting a regression equation using all the data points in each cluster. Each 
regression equation will use demand as the dependent variable and other independent variables, such as price, 
that may affect demand. Hence one could use the cluster-specific regression equation to estimate price 
elasticity for all the products within the same cluster.  

In this paper, the optimal binary partitioning problem for product-level price elasticity is investigated. In other 
words, the products are grouped into high and low price elasticity clusters. This assumption is without loss of 
generality: Creating a higher number of clusters is possible via successive application of our proposed 
algorithm into the resulting clusters after each binary split. However, finding even the optimal binary split is 
not easy when the number of predefined subgroups is large. Assuming the number of predefined subgroups 
is 𝐿𝐿, the number of possible nonempty binary partitions is 2𝐿𝐿−1 − 1. For example, when there are more than 20 
subgroups, the number of possible binary partitions would become more than one million making full 
enumeration a computationally prohibitive alternative. Hence this paper proposes two simple heuristics to 
address this problem.  

The first heuristic borrows the idea of gradient descent search developed for continuous search spaces and 
modifies it for integer search spaces. The algorithm starts with an initial solution and iterates through other 
feasible solutions until there is no improvement. Three variants of this algorithm are proposed that differ by 
the initial solution used. The second heuristic is a faster alternative to the gradient-descent based heuristics. 
This algorithm simply fits a separate regression equation for each subgroup and orders them by the mean 
response. Through synthetic datasets the performance of each heuristic is studied, and a real-world dataset is 
used to apply the proposed algorithms to estimate product-level price elasticity. 

The rest of this paper is organized as follows. The formulation of the problem and the heuristics are introduced 
in Section 2. The computational performances of proposed heuristics are evaluated using simulated datasets 
in Section 3. The same section also presents the results of applying the presented algorithms to estimate 
product-level price elasticities using a real-world dataset. Section 4 presents a discussion of this work and the 
potential implications on product pricing. Finally, Section 5 concludes the paper with a summary of this study 
and potential opportunities for future research. 

2. Problem Formulation and Methodology 

In this section, the formal definition and the mathematical formulation of the problem are presented. As the 
formulation gets increasingly difficult to solve, several heuristics are developed to generate good solutions to 
our problem. 

The objective is to cluster a group of products using a single categorical variable 𝑠𝑠 ∈ ℝ with L unique values 
(levels). These levels could be different stock keeping units (SKUs), product categories, or any other predefined 
product groupings. Let 𝑞𝑞 ∈ ℝ be the sales quantity and 𝒙𝒙 ∈ ℝ𝑝𝑝 represent the vector of independent variables, 
including but not limited to the product price, used to explain variability in the sales quantity. (In this paper, 
boldface is used to denote vectors or matrices and 𝑿𝑿′ denotes the transpose of matrix 𝑿𝑿.) The linear regression 
relationship between 𝑞𝑞 and 𝒙𝒙 is assumed to be different for each value of s. For simplicity of exposition, it is 
assumed that there is a single splitting variable. However, the proposed method(s) can be generalized to 
settings with multiple splitting variables by either forming factors through the combination of original factors 
or searching for optimal partition variable-wise. 

Let (𝒙𝒙𝑗𝑗𝑗𝑗′ , 𝑞𝑞𝑗𝑗𝑗𝑗 , 𝑠𝑠𝑗𝑗𝑗𝑗) denote the observations for product 𝑗𝑗 in period 𝑡𝑡. In this notation, 𝑠𝑠𝑗𝑗𝑗𝑗 ∈ {1,2, … , 𝐿𝐿} denotes 
which level does product 𝑗𝑗 belongs to in period 𝑡𝑡. Note that product 𝑗𝑗’s level is allowed to change across time, 
if needed. The partitioned regression model can now be written as follows: 

𝑞𝑞𝑗𝑗𝑗𝑗 = � 𝒙𝒙𝑗𝑗𝑗𝑗′ 𝛽𝛽𝑚𝑚𝑤𝑤𝑚𝑚(𝑠𝑠𝑗𝑗𝑗𝑗)
𝑀𝑀

𝑚𝑚=1

+ 𝜀𝜀𝑗𝑗𝑗𝑗 

where 𝑤𝑤𝑚𝑚�𝑠𝑠𝑗𝑗𝑗𝑗� ∈ {0,1} indicates whether the jtth observation belongs to the mth cluster or not. Since each 
observation has to belong to a cluster, it is required that ∑ 𝑤𝑤𝑚𝑚�𝑠𝑠𝑗𝑗𝑗𝑗�𝑀𝑀

𝑚𝑚=1 = 1 for any 𝑠𝑠𝑗𝑗𝑗𝑗 ∈ {1,2, … , 𝐿𝐿}. 
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In this study, only binary partitions are considered, i.e., 𝑀𝑀 = 2. However, multiple partitions could be 
extended straightforwardly. For example, using a greedy approach similar to the classification and regression 
trees (CART) method to generate decision trees, one can apply the methods presented in this paper 
consecutively to the resulting partitions to form new two subgroups until a termination condition is met. The 
result would be a multiple partitioning of the whole dataset.  

To simplify our notation in binary partitioning, assume that 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑤𝑤1�𝑠𝑠𝑗𝑗𝑗𝑗� ∈ {0,1}. Clearly, 𝑤𝑤1(. ) is a mapping 
from {1,2, … , 𝐿𝐿} to {0,1}. Moreover, atomic weights for each level are denoted by {𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝐿𝐿} ∈ {0,1}𝐿𝐿, where 
𝜏𝜏𝑙𝑙 = 1 (𝜏𝜏𝑙𝑙 = 0) implies that the lth level is in cluster 2 (1). Thus, one can write the observation-level weights as 
𝑤𝑤𝑗𝑗𝑗𝑗 = ∑ 𝜏𝜏𝑙𝑙𝐼𝐼(𝑠𝑠𝑗𝑗𝑗𝑗=𝑙𝑙)

𝐿𝐿
𝑙𝑙=1 . 

Let the level association vector 𝝉𝝉 = (𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝐿𝐿)′ and 𝑾𝑾 be the diagonal matrix with entries equal to 𝑤𝑤𝑗𝑗𝑗𝑗 . The 
sales quantities of all the products across available time periods are stored in vector 𝒒𝒒 and 𝑿𝑿 denotes the matrix 
for independent variables. Using the ordinary least squares regression theory, one could then write the total 
sum of squared error (SSE) of the two groups as follows: 

𝑄𝑄(𝝉𝝉) ≔ 𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆𝑆𝑆2 ≔ ‖𝒒𝒒 − 𝑿𝑿(𝑿𝑿′𝑾𝑾𝑿𝑿)−𝟏𝟏𝑿𝑿′𝑾𝑾𝒒𝒒‖2 + ‖𝒒𝒒 − 𝑿𝑿(𝑿𝑿′(𝑰𝑰 −𝑾𝑾)𝑿𝑿)−𝟏𝟏𝑿𝑿′(𝑰𝑰 −𝑾𝑾)𝒒𝒒‖2 ≔ 𝑄𝑄1(𝜏𝜏) + 𝑄𝑄2(𝜏𝜏).    (1) 

Our objective is to minimize 𝑄𝑄(𝝉𝝉) over the feasible set of 𝝉𝝉’s. 

The optimization problem stated above is combinatorial in nature: With 𝐿𝐿 levels of the splitting variable 𝑠𝑠, 
there are 2𝐿𝐿−1 − 1 possible solutions. The stated problem is also a special case of the general regression 
clustering problem explained in Section 1. In the original formulation, each data point could belong to any 
cluster. However, the formulation studied in this paper requires each data point with the same level to be a 
member of the same partition. Since exact solutions to the original problem do not exist, our problem is also 
quite challenging to solve. 

2.1 Heuristics 

Our problem has a combinatorial nature, thus an exact solution to the problem is not computationally feasible. 
An exhaustive search that considers all possible groupings of the levels into two disjoint clusters would 
provide an exact solution. However, even with a moderate number of levels, this is computationally too 
expensive: For example, a dataset with 25 products requires a search of 16,777,215 possible partitions, which 
is computationally infeasible. Hence heuristics are developed to generate good solutions to the problem. This 
paper considers two simple heuristics and their variants: gradient descent-based and categorical ordering. 

The gradient descent-based algorithm implements the gradient descent idea on an integer space. This 
algorithm initially 𝐿𝐿 levels are randomly assigned into two nonempty and non-overlapping clusters, then all 
the levels are cycled through and each level’s cluster membership is flipped sequentially. The resulting 𝐿𝐿 
cluster assignments are evaluated in terms of the SSE criterion 𝑄𝑄(𝝉𝝉) as defined in (1). Then the clustering that 
minimizes 𝑄𝑄(𝝉𝝉) is chosen as the current assignment and iteration continues until the algorithm converges. 
Let’s define two partitions as adjacent if they differ only by one level. Then our algorithm can be considered 
as a variant of the classical gradient descent on the space of possible partitions. A local optimum is guaranteed 
to be reached after the gradient descent algorithm terminates. The complexity of our algorithm is polynomial 
in the number of levels, assuming that the SSE is locally convex near the initial solution. 

Three variants of the gradient descent-based algorithm are studied in this paper. The first variant runs the 
algorithm multiple times, each time using a different random starting partition. The best solution out of these 
multiple runs is hoped to be a global optimum for the original problem. As the starting points are selected 
randomly, there is some uncertainty about what the converged solution will be. The second version, defined 
as “All-In-One Initial,” assigns all the levels into the same cluster initially and iterates through until 
convergence. The last variant, defined as “Smart Initial,” first fits a regression equation to each level 
independently.  Then the estimated price elasticity coefficients are ranked, ignoring the statistical significance 
of the resulting estimate, and the levels are split into two groups from the largest gap in the ordered 
coefficients. Using this as the initial solution, the gradient descent-based algorithm is run till termination.  
Unlike the first variant, there is no randomness about what the final solution will be using the last two variants. 

The second heuristic, designed to alleviate the computational burden, is to order the categories in a way similar 
to CART. In a piecewise constant model like CART, Hastie et al. (2009) reviews the idea of ordering the 
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categories by the mean response in each category and then treating the categorical variable as if it were an 
ordinal variable. Thus, the computational complexity is reduced from exponential to linear. The simplification 
was justified by Fisher (1958) in an optimal splitting setup and is exact for a continuous response regression 
problem. In the regression clustering context, let �̂�𝛽𝑙𝑙 represent the least squares estimate of 𝛽𝛽 given the 
observations in the lth level. Now, lth level’s fitted regression line would be 𝒙𝒙′�̂�𝛽𝑙𝑙. A strict ordering of the 𝒙𝒙′�̂�𝛽𝑙𝑙’s 
as functions of 𝒙𝒙 may not exist, thus an approximate solution is suggested. Our method uses 𝒙𝒙�′�̂�𝛽𝑙𝑙   to rank the 
𝐿𝐿 levels where 𝒙𝒙� is the mean of 𝒙𝒙, and thus could handle the categorical variable as ordinal. This approximation 
performs well when there is a clear separation in the fitted models, however a locally optimal partitioning is 
not guaranteed. 

3. Computational Results 

To measure the quality of the solutions generated via the heuristics, a computational study is performed using 
simulated and real-world datasets. Through simulated datasets, the performance of our algorithms is studied 
as the number of levels (e.g., products), the number of data points, the magnitude of the variability in the 
residuals and the underlying regression equation vary. Since the optimal partitioning in some of the simulated 
datasets is known by construction, one could determine if our heuristics could generate solutions that are close 
to the optimal. Then the proposed heuristics are applied on a real-world sales dataset to estimate product-
level price elasticity and the resulting product groups and the estimated price elasticities in each group are 
discussed.  

3.1 Results with the Simulated Datasets 

In this computational study, the performances of the three variants of the gradient descent-based heuristic as 
well as the categorical ordering heuristic are compared. The first variant of the gradient descent-based 
heuristic is run 5 times, each time with a different random starting solution, and the best solution out of these 
5 replications is recorded. Since there is no randomness in the other two variants, they are run only once. The 
comparison between the three variants of the gradient descent-based heuristics is used to understand the effect 
of using starting solutions with different qualities. Moreover, the quality of the solutions generated by the 
categorical ordering heuristic, which is expected to be a faster alternative to the gradient descent-based 
heuristic, is evaluated using the generated datasets.  

As a benchmark, the random search method is used to search through min(4000, 2𝐿𝐿−1 − 1) randomly 
generated unique partitions and return the partition with the smallest total SSE as defined in (1). This method 
is replicated 5 times and the best solution out of these 5 replications is recorded. Notice that when the number 
of levels is less than or equal to 12, the possible number of unique partitions is less than 2047. Hence the 
benchmark gives the optimal partitioning when the number of levels is low. However, the performance of the 
benchmark is expected to deteriorate exponentially fast especially when the number of levels is more than 12. 

Simulated datasets are created under the following generation rules: It is assumed that there is a single 
independent variable, price p, that affects the sales quantity. Three different parameter settings are considered: 
In the first two parameter settings, a linear demand model is used where the optimal partition is binary. In the 
first setting, the underlying regression equation is assumed to take the form 𝑞𝑞 = 1000 − 8 ∗ 𝑝𝑝 + 𝜀𝜀 for the first 
partition and 𝑞𝑞 = 500 − 𝑝𝑝 + 𝜀𝜀 for the second one. Even-numbered levels are assigned to the first partition and 
odd-numbered levels are assigned to the second partition. The second setting is very similar to the first one. 
The only difference is that only the first two levels are in the first partition and the rest of the levels belong to 
the second partition. A comparison of the results obtained under these two settings will help us understand 
the performance of our methods under equal and unequal number of levels in the optimal partitions. Multiple 
splits could be optimal in many applications as well which is considered in the third setting: There are 8 
partitions and the underlying regression equation in each partition is assumed to be 𝑞𝑞 = 1000 − (𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 8) ∗
700 − ((𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 8) + 1) ∗ 𝑝𝑝 + 𝜀𝜀. Clearly, the optimal number of partitions is 8 in this last setting. However, since 
only binary partitions are considered, the optimal binary partition depends on the individual dataset and is 
not known in advance. Across all these three settings, price 𝑝𝑝 is randomly generated uniformly from the 
interval [500,1000] and regression error 𝜀𝜀 is generated from a normal distribution with mean zero and standard 
deviation 𝜎𝜎. 
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In total 528 datasets are created. In each dataset, one of the following parameters is varied: The number of 
levels changed from 8 to 48 in increments of 4. Given the number of levels, the number of data points is selected 
from the set {15𝐿𝐿, 30𝐿𝐿, 60𝐿𝐿, 90𝐿𝐿}. The standard deviation of the residuals varied from 100 to 400 in increments 
of 100. The result is a full factorial design with 11*4*4*3=528 different datasets. All computations are carried 
out on a machine with Intel® Core™ i7-8565U CPU @ 1.80 GHz processor and 16 GB RAM. 

The quality of the results obtained from each method is measured using the following formula: 

𝑃𝑃𝑃𝑃 =
𝑆𝑆𝑆𝑆𝑆𝑆0 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓

𝑆𝑆𝑆𝑆𝑆𝑆0
 

where 𝑆𝑆𝑆𝑆𝑆𝑆0 is the total SSE assuming all the levels are in the same group and 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 is the total SSE in the two 
partitions arrived using the method at hand. Thus, the percentage reduction in the SSE (PR) is used to evaluate 
the methods. Table 1 provides the summary statistics of the 5 methods across all the generated datasets. The 
average PR is highest with the first variant of the gradient descent-based heuristic. Using a smart initial 
solution decreases the performance only slightly. The average performance of the category ordering heuristic 
is very similar, but there are a few datasets where the performance is quite low (see the minimum and the 5th 
percentile of the PR reported for this method). Using all-in-one initial solution deteriorates the performance of 
the gradient-descent-based heuristic to an extent. Finally, the random search method has the lowest average 
PR of the five methods, as expected. Even though this method could find the optimal partitioning when 𝐿𝐿 ≤
12, the performance worsens exponentially fast as 𝐿𝐿 increases. Also, note that the random search method is 
used only when 𝐿𝐿 ≤ 28 due to computational time limits. Since the PR is known with increasing 𝐿𝐿, a direct 
comparison is not appropriate. In the rest of this section, how design factors affect the performances of the 
methods is addressed.     

Table 1. Descriptive statistics about the percentage SSE reductions of the five methods across 528 datasets 

 

Descent 
Search 

Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

Random 
Search 

Average 71.09% 70.57% 67.81% 70.19% 59.64% 
Min 16.34% 16.34% 16.34% 5.71% 9.37% 

5th Perc. 32.34% 32.39% 32.39% 28.70% 19.00% 
25th Perc. 63.42% 62.64% 58.99% 63.05% 47.85% 
Median 74.79% 74.63% 72.79% 74.76% 62.50% 

75th Perc. 82.15% 82.29% 76.18% 82.29% 75.07% 
95th Perc. 96.41% 96.43% 95.27% 96.43% 94.09% 

Max 97.15% 97.15% 97.15% 97.15% 97.15% 

Figure 1 presents the average PR for the 5 methods as the number of levels varies. As the random search 
method could lead to much lower PRs, the secondary vertical axis is used to display the average PR for this 
method. Notice that the average PRs are the same when 𝐿𝐿 ≤ 12 with the gradient descent-based and random 
search methods. The performance of random search decreases rapidly, and the average PR reduces to 39% 
when 𝐿𝐿 = 28. The decrease in the performance is also observed for our heuristics, albeit at a much smaller rate. 
Of the four heuristics we have proposed, the first variant of the gradient descent-based heuristic performs the 
best across almost all the different number of levels. Using the smart initial solution does not decrease the 
performance much, and even has a better performance when 𝐿𝐿 = 48, which may suggest that initial solution 
quality is critical especially when the number of levels is high. The performance of the categorical ordering 
heuristic could be significantly worse than the former two heuristics for some instances. Running the gradient 
descent-based heuristic with the all-in-one initial solution results in the worst performance of the four 
heuristics; however, the gap in the performance decreases as one increases the number of levels. Also notice 
that when  𝐿𝐿 (𝑚𝑚𝑚𝑚𝑚𝑚 8) = 0, due to our generation rules of the simulated datasets under the third regression 
equation setting (i.e., the one with multiple partitions), there is an equal number of levels in each underlying 
partition. For these cases, starting with the all-in-one initial solution increases the likelihood that the heuristics 
stuck in a local optimum that is far away from the global one. However, when there are an unequal number 
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of levels in each partition, there are high quality solutions which are close to all-in-one initial solution, hence 
the performance is better when 𝐿𝐿 (𝑚𝑚𝑚𝑚𝑚𝑚 8) ≠ 0. 

 
Figure 1. The average percentage SSE reductions of the five methods (Numbers for the Random Search 

method is displayed on the secondary y-axis.) 
By our construction of the simulated datasets, the optimal binary partitioning is known a priori under the first 
two regression equation settings. For these two settings, 352 datasets in total, the maximum number of 
misclassified levels are computed given the number of levels for each method. The results are presented in 
Table 2. The performances of the gradient descent-based heuristics are quite good in terms of misclassification, 
explaining their comparatively better performance especially for high number of levels (i.e., 𝐿𝐿 > 12). Starting 
with a smart initial solution never misclassifies a level. The comparatively lower performance of this variant 
of the heuristic compared to the first variant as depicted in Figure 1 is due to lower performance for the cases 
with multiple partitions that are not included in the analysis behind Table 2. Moreover, it is interesting that in 
some cases categorical ordering heuristic misclassifies more levels than the simple random search. This 
observation supports the fact that the worst-case PR of this heuristic is lower than that of the random search, 
further questioning the robustness of the categorical ordering method.   

Table 2. The maximum number of misclassified levels across the five methods 

L 
Descent 
Search 

Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

Random 
Search 

8 0 0 1 3 0 
12 0 0 1 1 0 
16 0 0 1 1 1 
20 1 0 1 3 2 
24 1 0 1 3 4 
28 0 0 1 7 6 
32 0 0 1 4  

36 0 0 1 4  

40 1 0 1 9  

44 1 0 1 5  

48 1 0 1 5  
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The average PR of each method under three different regression settings is presented in Table 3. In line with 
our earlier discussions, the first and the smart initial variants of the gradient descent-based heuristic performs 
the best, though the performance of the latter is lower under the third regression setting. Starting with all-in-
one initial solution has the best performance out of the methods under the second regression setting where 
the number of levels in each partition is different (i.e., 2 versus 𝐿𝐿). In this setting, most of the levels belong to 
the same partition, hence the optimal partition could be reached in two iterations if one starts the gradient 
descent method with the all-in-one solution. On the other hand, the categorical ordering performs especially 
well under the third setting (i.e. multiple partitions). Finally, the random search method performs 
comparatively worst under the first two settings with binary partitions. Given the fact that this method is only 
computed for datasets with 𝐿𝐿 ≤ 28 and the PR reduces with 𝐿𝐿, the gap over all the 528 datasets would be 
larger. 

Table 3. The average percentage SSE reductions of the five methods under different regression settings 

Regression Setting 
Descent 
Search 

Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

Random 
Search 

1 80.26% 80.47% 74.32% 78.40% 65.82% 
2 58.52% 58.83% 58.83% 57.57% 46.45% 
3 74.48% 72.41% 70.28% 74.59% 66.65% 

All 71.09% 70.57% 67.81% 70.19% 59.64% 

Regarding the remaining two factors, the number of data points does not have a significant impact on the 
average PR, except the categorical ordering heuristic (see Table 4) which requires a sufficient number of data 
points for better performance. The average PR as the standard deviation of the regression error is shown in 
Table 5. As expected, the performance of all the heuristics decreases with increased standard deviation. The 
decrease is largest with the categorical ordering heuristic, which shows that this method is very dependent on 
a strong relationship between price and demand. 

Table 4. The average percentage SSE reductions of the five methods across different number of data points 

Number of Data Points 
Descent 
Search 

Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

Random 
Search 

15*L 71.17% 70.78% 68.89% 67.62% 60.20% 
30*L 71.16% 70.77% 67.38% 71.05% 59.58% 
60*L 70.92% 70.71% 67.64% 70.99% 59.59% 
90*L 71.10% 70.02% 67.35% 71.10% 59.19% 

Table 5. The average percentage SSE reductions of the five methods across varying standard deviation of the 
residual error  

σ 
Descent 
Search 

Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

Random 
Search 

100 85.98% 85.93% 82.62% 86.40% 68.59% 
200 75.75% 75.21% 70.86% 75.83% 63.25% 
300 65.52% 64.62% 62.64% 64.07% 55.91% 

400 57.10% 56.52% 55.14% 54.46% 50.82% 

Given the performances of the five methods regarding the solution quality, the next question is the 
computational times required to run each of these methods. Table 6 presents the average computation time 
for each method, as a function of the number of levels. The categorical ordering heuristic is the fastest heuristic, 
owing to the fact that it does not require any iteration. All the variants of the gradient descent-based heuristic 
slow down as the number of levels increases, as a higher number of iterations are required for convergence. 
However, starting with a smart initial solution requires a comparatively smaller computational time especially 
when the number of levels is high. Notice the high computational times required to run the random search 
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method. When 𝐿𝐿 ≥ 16, the upper limit of 4000 searches is exceeded, hence this method only computes 4000 
solutions independent of 𝐿𝐿. Hence the solution time is steady around half a minute for 𝐿𝐿 ≥ 16. 

Table 6. The average computational times (seconds) of the five methods 

L 
Descent 
Search 

Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

Random 
Search 

8 0.22 0.03 0.04 0.02 0.17 
12 0.68 0.09 0.12 0.04 4.13 
16 0.97 0.10 0.17 0.04 31.59 
20 1.39 0.13 0.23 0.05 28.80 
24 1.97 0.15 0.32 0.05 29.39 
28 2.70 0.22 0.42 0.06 28.68 
32 3.60 0.23 0.57 0.08   
36 4.65 0.32 0.72 0.08   
40 5.82 0.29 0.91 0.09   
44 7.24 0.43 1.11 0.11   
48 8.70 0.47 1.30 0.12   
All 3.45 0.22 0.54 0.07 20.46 

3.3 Results with a Real-World Dataset  

To understand the performances of the proposed heuristics in a real-world dataset, a retail sales dataset from 
a small firm offering several products is used. The dataset includes the weekly sales as well as average weekly 
sales prices across 156 weeks for 11 products which are coded SKU A through SKU K in this study. SKU E is 
removed from the study due to incomplete data. The data collection period is from 25 September 2016 through 
15 September 2019. 

To capture the dynamic nature of product-level price elasticity, the dataset is divided into 13 equal sized 
subsets, each covering 12 consecutive sales periods (i.e., a three-month span). The underlying regression 
equation which is used to fit for each cluster is given below: 

log�𝑞𝑞𝑗𝑗𝑗𝑗� = 𝛽𝛽0 + 𝛽𝛽1
𝑗𝑗𝑡𝑡 + 𝛽𝛽2 log�𝑝𝑝𝑗𝑗𝑗𝑗� + 𝜀𝜀𝑗𝑗𝑗𝑗 

This demand model, also known as the log-log model, is used frequently in the literature to estimate price 
elasticity (see, for example, Cohen et al. 2017). Any product-specific trend is captured in our model with the 
𝛽𝛽1
𝑗𝑗 coefficients. The coefficient 𝛽𝛽2 measures the product-price elasticity for the all the products in the particular 

cluster. The adjusted R2 values of the regression fits in the final clusters are found to be above 90%, hence other 
independent variables, such as competitor prices, are not incorporated into the regression in line with other 
works (Cohen et al. 2017). 

Table 7 presents the percentage SSE reduction after applying our heuristics across the thirteen subsets. In each 
row of the table, the best performance is highlighted in boldface. In all but one subset, the first variant of the 
gradient-descent heuristic offers the highest percentage SSE reduction. The difference between the other 
variants is significant for subsets numbered 1, 2, and 12, but quite small or does not exist for the rest of the 
subsets.  The categorical ordering heuristic could lead to significantly poor performances in almost half of the 
subsets. This result is in line with the observations regarding the poor robustness results of this heuristic. 
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Table 7. The percentage SSE reductions of the four methods across 13 subsets  

Subset Descent Search 
Descent Search 
(Smart Initial) 

Descent Search  
(All-In-One Initial) 

Categorical 
Ordering 

1 9.16% 6.70% 6.70% 6.28% 
2 12.91% 15.79% 12.91% 12.40% 
3 15.68% 15.68% 15.68% 15.63% 
4 1.13% 1.03% 1.03% 0.44% 
5 10.78% 10.78% 10.78% 6.47% 
6 6.68% 6.68% 6.68% 6.03% 
7 18.42% 18.42% 18.42% 18.42% 
8 3.11% 3.11% 3.11% 2.56% 
9 3.92% 3.92% 3.69% 3.17% 

10 18.82% 6.34% 18.82% 6.34% 
11 20.70% 20.70% 20.70% 20.70% 
12 15.07% 12.94% 12.94% 12.94% 
13 18.23% 18.23% 18.23% 18.23% 

Given that the best performing method is the first variant of the gradient descent-based heuristic, product-
specific price elasticities are estimated for each cluster across the 13 subsets using this variant of the heuristic. 
The first part of Table 8 provides the estimated elasticities, and the associated statistical significance levels, for 
the products in each cluster as well as cluster memberships. The products in the first group have higher price 
elasticities as compared to the products in the second group. Also notice that the estimated price elasticities 
for the first group are always statistically significant, whereas the estimated price elasticities for the second 
group are not significant at 1% level in six subsets. Some products do not change cluster membership across 
the 13 subsets (e.g. SKU B), whereas the opposite is true for some other products (e.g., SKU J).  
What would happen if, instead of clustering products into two groups, all the products are combined in a 
single group to estimate the price elasticity? The last column of Table 8 lists the estimated category-specific 
price elasticity assuming all the products are in the same category and thus have the same elasticity. Notice 
two problems with this approach. First, it may lead to underestimation and overestimation of price elasticity 
for some products. Second, statistically significant category-specific price elasticities are not available in the 
last two subsets. Hence price optimization using price elasticity estimates would lead to suboptimal pricing 
or is not possible due to the unavailability of elasticity estimates.   

Table 8. The price elasticity of the two groups as well as the group membership of the SKUs across 13 
subsets (p-values for the price elasticity coefficient are displayed inside the parenthesis where *** (**) implies 

a p-value that is less than 0.001 (0.01)) 
Subset Group 1 Group 2 All Products 

Price 
Elasticity 

SKU List Price 
Elasticity 

SKU List Price 
Elasticity 

1 -3.59 (***) A,B,C,G -1.52 (***) D,F,H,I,J,K -1.71 (***) 
2 -2.89 (***) A,B,C,D,G,H,I,J Not Sig. F,K -1.18 (***) 
3 -4.01 (***) B,I -1.55 (***) A,C,D,F,G,H,J,K -1.97 (***) 
4 -1.55 (***) A,B,G,I,J,K Not Sig. C,D,F,H -1.48 (***) 
5 -2.88 (***) B,G,H,K -1.09 (**) A,C,D,F,I,J -1.99 (***) 
6 -3.38 (***) B,D,F,G,J -1.37 (**) A,C,H,I,K -1.78 (***) 
7 -1.81 (***) A,B,C,D,F,J,K Not Sig. G,H,I -1.69 (***) 
8 -2.13 (***) A,B,F,G,H,I,J,K Not Sig. C,D -2.04 (***) 
9 -1.8 (***) A,B,F,G,K Not Sig. C,D,H,I,J -1.62 (***) 

10 -6.56 (***) B,C,G,J -0.92 (***) A,D,F,H,I,K -1.38 (***) 
11 -4.36 (***) B -0.98 (***) A,C,D,F,G,H,I,J,K -1.36 (***) 
12 -1.36 (***) B,C,D,F,I,K Not Sig. A,G,H,J Not Sig. 
13 -1.58 (**) A,B,C,D,F,G,H,I,K Not Sig. J Not Sig. 
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Another alternative to clustering products is to estimate product-specific price elasticity using only that 
product’s sales data. Table 9 displays the number of products in each dataset that would have statistically 
insignificant price elasticity, along with the same figure using our regression clustering method. In total, our 
approach is able to estimate statistically significant product-specific price elasticities for additional 67 product-
subset pairs that single product analysis could not provide. Thus, our method provides necessary input in 
order to calculate the optimal price for these additional 67 cases, which represents 51% of total cases.  

Table 9. The number of products with statistically insignificant price elasticity estimates (assuming a p-value 
of  0.01) using different methods across 13 subsets  

Subset Regression Clustering Method Single Product Analysis 
1 0 4 
2 2 7 
3 0 6 
4 4 8 
5 0 7 
6 0 8 
7 3 4 
8 2 6 
9 5 7 

10 0 7 
11 0 7 
12 4 9 
13 1 8 

Total 21 88 

4. Discussion 

Revenue management is increasingly leveraged by firms to increase revenues and use available resources 
more effectively (see, for example, Klein et al. 2020). It is an effective strategy especially for firms with limited 
product availability and price-sensitive demand. Firms in the service sector adopted this method first, 
followed by firms in the retail sector. For example, Yazgan et al. (2019) utilizes demand prediction and 
mathematical optimization to find optimal ticket prices under capacity constraints for a given route of an 
airline. On the retail side, Cohen et al. (2017) employs revenue management to design promotional pricing 
strategies for an FMCG company. 

Product price optimization is one of the instruments revenue management uses. Given the competitive 
pressures of today's marketplaces, setting the right price is critical to stay competitive. If the product price is 
set too high, then the firm would face low demand. If it is set too low, then the product margin would be very 
thin. The best tradeoff requires a complete understanding of how demand is affected by prices, namely the 
price elasticity. This paper provides a novel method to estimate product-level price elasticity under limited 
data.  

In order to obtain a reliable estimate of the product-level price elasticity, one needs to observe sufficient price 
changes in the historical sales data for a given product. For example, Yazgan et al. (2019) uses 165 weeks of 
sales data for demand estimation for a fight leg of an airline, which is known to use dynamic pricing. However, 
price changes infrequently for many products of firms serving in other sectors. In the retail sector, for example, 
Bonomo et al. (2020) states that on a regular day only 0.5% of the products are repriced. Moreover, dynamic 
customer behaviors render data older than a couple of months useless to estimate up-to-date price elasticity. 
Using only a single product's sales data would lead to statistically insignificant product-specific price elasticity 
estimates due to infrequent price changes. In our analysis, the proposed method is able to estimate statistically 
significant price elasticities for an additional 51% of the cases as compared to single product analysis, which 
is quite substantial. Another alternative on the opposite side of the spectrum is to estimate category-specific 
price elasticity using all the data for all the products in the predefined category. Our results also highlight the 
fact that this approach may lead to underestimation and overestimation of price elasticity, which in turn would 
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lead to suboptimal pricing. Finally, one could rely on managerial insights on setting prices, which may be 
biased and is far from perfect. Our results show that firms could increase revenues by better aligning product 
prices with the up-to-date product demand, even in cases with limited relevant sales data by jointly finding 
the set of product clusters with similar price elasticities and estimating the unique price elasticity for the 
products in the cluster.  

Given the limited data due to infrequent price changes and the huge number of SKUs, generating product-
specific elasticity for each product is challenging. Our method helps to estimate product-specific price 
elasticities, which in turn could be used to set optimal prices, for these kinds of products. The result is increased 
profitability without any cost increase, which is the real promise of revenue management. Cohen et al. (2017) 
estimates that using sales data of a grocery retailer, revenue management could improve the profits of the 
retailer by 5%. This is only true for the products with sufficient relevant historical data. Our method, which 
could be used to estimate price elasticity even under limited historical data, could extent this profit gain to 
almost all the products in the portfolio.  

For many sectors, product demand is dynamic and affected by changes in competitor prices, seasonal factors, 
and customer behaviors. The techniques presented in this paper could be used to update price-elasticity 
estimates more frequently. Our results show that there could be significant changes in price elasticity estimates 
for the same product across different time periods (see Table 8). Hence the advantage of using updated price 
elasticity estimates in setting optimal prices will take into consideration the dynamic and seasonal demand 
patterns. 

The methodology presented in this paper could be incorporated into decision support systems for product 
pricing. Our clustering algorithm could generate price elasticities for thousands of products since minimal 
manual intervention is necessary only to filter out inconsistent results. Even with a larger number of products, 
the gradient descent-based heuristic with smart initial solution provides a solution to help determine the 
optimal product prices within a reasonable time, while compromising little from solution quality. Hence 
automatic product price changes for the full product portfolio are possible.  

Automatic and frequent price changes could prove to be problematic from technical and customer relationship 
management points of view. On the technical side, one has to keep aware of system nervousness, as changing 
prices too frequently would increase the possibility of making operational mistakes like wrong price tags 
displayed on the product or the IT systems. Moreover, each price change has operational costs required to 
execute this decision. Hence these associated costs have to be considered while making price change decisions. 
Bonomo et al. (2020) considers economies of scale in changing prices of multiple products at the same time 
and conducts a general equilibrium analysis of a monopolistic firm. On the customer side, Yıldırım and Mert 
(2019) argues that customers may deem some pricing policies unethical and flag them as excessive pricing or 
discounted pricing. Thus, price changes have to be controlled and any price adjustment has to be made while 
considering these constraints and intangible costs.  

5. Conclusion 

The focus of this paper is to devise methods to estimate product-level price elasticities for products with 
limited relevant historical sales data. Since fitting separate regression equations for each product to estimate 
price elasticity could lead to statistically insignificant results as relevant data is limited, products are intended 
to be grouped into two clusters based on the magnitude of the resulting price elasticity. Since this is a 
challenging problem due to its combinatorial nature, especially when the number of products is large, this 
paper designs two heuristics to solve this problem. The gradient descent-based heuristic is an iterative 
algorithm that travels along with the search space and the category ordering heuristic fits a regression equation 
for each product and simply orders the products based on the mean response and splits them at the largest 
gap. Using synthetic datasets, the gradient descent-based heuristic is found to offer better performance at the 
expense of a longer computational time. Using smart initial solutions is found to be quite effective especially 
when the number of products is large and the solution time is a hard constraint for implementation. The 
categorical ordering heuristic suffers from robustness problems but could be effective in datasets with multiple 
underlying clusters. Next, real-world sales data is used to apply the devised methods to estimate product-
level price elasticity. Although the performance difference between the two methods decreased, the gradient 
descent-based heuristic still yields better performance.  
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Future research could investigate several topics to deepen our understanding of this problem. First, an exact 
solution to this problem could be developed, possibly with the use of mathematical programming and 
optimization techniques. When the number of products is very large, exact solution methodologies could take 
a very long time, hence meta-heuristics could be developed to generate close-to-optimal solutions.  

In this work, products are clustered into two groups. One could successively use the binary clustering 
approach to the resulting clusters of our method to generate multi-cluster solutions. Another extension of our 
work is to study the optimal number of product clusters. One could tune the number of clusters parameter of 
our method using a validation set, yet excessive computing times needed with exact solutions may render this 
option impossible. Finally, our heuristics could be evaluated using other real-world datasets, possibly with a 
higher number of products, to determine the extent of our conclusions. 
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